Power Semiconductor Devices (Why WBG Devices for PE?)

Department of Electronic Engineering SOGANG UNIVERSITY

http://device.sogang.ac.kr

Prof. Dr. Kwangsoo Kim kimks@sogang.ac.kr

Comparison of Relay

VS

mechanical relay

(ex : 20mm × 10mm × 10mm)

semiconductor relay

(ex : 5mm × 5mm × 3mm)

Power Semiconductor Devices (PSD)

Category of PSD

Role of PSD

Switching converter is a *power processor*

Applications of Silicon PSD

Applications of WBG PSD

Applications of WBG PSD

WBG semiconductor devices in transportation applications.

Power System Performance vs Frequency

MOSFET vs Bipolar Tr

Feature	MOSFET	BJT	
Control Type	Voltage-controlled	Current-controlled	
Input Impedance	High (MΩ-GΩ)	Low (kΩ)	
Output Impedance	High	Low	
Switching Speed	Fast (suitable for high frequency)	Slow	
Power Dissipation	Low	High (due to base current)	
Thermal Stability	Good (prevents thermal runaway)	Poor (prone to thermal runaway)	
Common Applications	Switching, RF circuits, digital circuits	Analog amplification, low-frequency power amplification	
Carrier Movement	Majority	Minority	

Silicon Power MOSFET Limit

Discovery of SiC

In 1891 Edward G Acheson (USA) produced a small amount of Silicon Carbide while conducting experiments with the aim of obtaining a hard material from the reaction of clay and carbon.

He passed a strong electric current from a carbon electrode through a mixture of clay and coke contained in an iron bowl, which served as the second electrode.

Acheson recognized the abrasive value of the crystals obtained, had them analysed, found the formula to be SiC, incorporated The Carborundum Company in September 1891, and filed application for a patent on May 10, 1892.

The milestones of the development process of SiC power electronic devices.

Wafer Diameter Evolution by Material

Power SiC Market Forecast

OUTLINE

1. WHY is SiC better than silicon?

2. HOW do we make SiC devices?

3. WHICH SiC devices have been made?

1. Why is SiC better than silicon?

• What is SiC?

Properties of SiC

• What is advantageous for devices?

What is SiC?

C atom ۲

Fig. 4. The tetragonal bonding of a carbon atom with the four nearest silicon neighbours. The distances a and C-Si are approximately 3.08Å and 1.89Å respectively.

© Olle Kordina

(0001) 1.89Å 0.63Å C atom

(0001)

Carbon face

Silicon face

Si atom

Crystals of SiC

What are polytypes?

Properties of SiC

Property	Si	GaAs	3C-SiC	6H-SiC	4H-SiC	GaN	Diamond
Melting point [C]	1420	1238	2830	2830	2830	1123	4000
Thermal conductivity [W/cmK]	1.3	0.54	5	4.9	4.9	1.3	20
Bandgap [eV]	1.12	1.42	2.23	3.02	3.26	3.39	5.45
Intrinsic carrier concentration (cm ⁻³)	10 ¹⁰	1.8x10 ⁶	~10	~10 ⁻⁵	~10 ⁻⁷	~10 ⁻¹⁰	~10 ⁻²⁷
Electron mobility [cm ² /Vs]	1500	8500	1000	370	1000	1500	2200
Hole mobility [cm ² /Vs]	600	400	50	90	50	150	1600
Saturation electron drift velocity [x10 ⁷ cm/s]	1	1	2.5	2	2	3.0	2.7
Breakdown field [x10 ⁵ V/cm]	3	6	20	25	30	50	100
Dielectric constant	11.9	13.1	9.7	9.66	9.7	9.5	5.5

Properties of Si, SiC, and GaN

Properties of SiC

Device basics

On resistance

$$W \approx \sqrt{\frac{2 \varepsilon V_B}{q N_D}} \qquad \qquad N_D = \frac{2 \varepsilon V_B}{q W^2} = \frac{\varepsilon E_C^2}{2 q V_B}$$

For 1 kV:	Si	SiC
W (μm)	100	10
N⊳ (cm⁻³)	10 ¹⁴	10 ¹⁶

$$R_{on,sp} = \frac{W}{q \mu_{n} N_{D}} = \frac{4V_{B}^{2}}{\epsilon \mu_{n} E_{C}^{3}}$$

$$\frac{V_B^2}{R_{on,sp}} = \frac{\varepsilon \mu_n E_C^3}{4}$$

High voltage devices

High frequency devices

at 300 K	Si	GaAs	4H/6H-SiC	GaN
Ec (MV/cm)	0.25	0.3	2.2- 2.5	3
Er	11.9	13	10	9.5
Vsat (cm/s)	1x10 ⁷	1x10 ⁷	2x10 ⁷	3x10 ⁷

High temperature devices

High power devices

High integration devices ?

Needs good material, few defects
Not for SiC!

SIC VLSI ?

Summary Why SiC ?

- High critical field
 - => low on-resistance (high frequency)
- Low permittivity and high vsat
 => high frequency
- Wide bandgap
 - => high temperature
- High thermal conductivity
 - => high power and high temperature

2. How do we make SiC devices?

- SiC wafers
- SiC epitaxy
- Heteroepitaxy
- SiC doping
- SiC etching
- SiC isolation
- SiC contacts

SiC wafers

SiC Growth Methods

✓ Acheson process (Acheson 1892)

- ✓Lely process (Lely 1954)
- ✓ Modified Lely process (Tairov and Tsvetkov 1978; Tairov and Tsvetkov 1981)

SiC wafers

Schematic drawing of a modified Lely setup

SiC wafers

• The crystal growth quality In 2013

- ✓ 6" wafers available
- \checkmark with 0.2 micropipes/cm²
- \checkmark less than 30 dislocations/cm²

SiC epitaxy

The Principle of SiC CVD. The precursors are transported by the hydrogen to a zone where the reactions takes place

Heteroepitaxy

SiC doping

SiC etching

Wet etching using KOH (500°C) ?
Dry etching using CF₄, SF₆ etc

SiC isolation

Thermal oxidation of SiC (>1,100 °C):

 $2 SiC + 3O_2 \Rightarrow 2 SiO_2 + 2 CO$

Thermal oxidation of silicon:

$$2Si + 2O_2 \Rightarrow 2SiO_2$$

Deposited oxide 700 °C

SiC contacts

Summary How SiC ?

- Similar to silicon
- Much higher temperatures
- Nothing is impossible
- Material quality largest obstacle

3. Which SiC devices ...?

- Transistors
- Thyristors

pn Diodes

Mesa etched

Field crowding causes premature breakdown

Junction Terminations

Schottky Diodes

Schottky

$$V_{F,Schottky} = R_{ON} J_F + \Phi_B$$
$$V_{F,pn} = R_{ON} J_F + V_{bi}$$

- Application: protection for silicon IGBTs
- No reverse recovery from majority carriers
- Forward voltage drop lower than pn diode

JBS Diodes

THS CONTRACT

2 terminal devices

- Schottky and now JBS diodes are commercially available up to 1.2 kV: CREE, Infineon basically.
- PiN diodes will be only relevant for BV over 3 kV.
- Need to overcome its reliability problem (forward voltage drift) before commercialization

MOSFETs

MOSFET Advantages

- Simple planar structure
- Voltage gate control
- Extensively used in Si technology
- Normally-off

MOSFET main problems

- Low channel mobility in SiC
- High temperature operation ?
- Gate reliability ?

Lateral MOSFETs

Vertical MOSFETs

MOSFET Channel Mobility

$$g_{D} \equiv \frac{\partial I_{D}}{\partial V_{D}} = \frac{Z}{L} \mu_{eff} C_{ox} (V_{G} - V_{T}) = \left(\frac{A}{R_{on,sp}}\right)$$

Inversion channel:

$$\mu_{eff} = \frac{1}{2} \mu_{n,bulk}(Si)$$
$$\mu_{eff} = \frac{1}{10} \mu_{n,bulk}(SiC)$$

Accumulation channel:

MOSFET Reliability

•
$$E_{C,SiC} = 2.5 \text{ MV/cm}$$

• For long term reliability:

Bipolar Transistors

- High voltage or High frequency
- Hetrojunction od Homojunction

3 Terminal Devices: high V_B

JFETs

- Junction gate difficult to reduce in length
- Semi-insulating wafer ?

MESFETs

- Semi-insulating wafer to reduce capacitance
- Source via-hole to reduce inductance
- Schottky gate

HFETs

- Semi-insulating wafer to reduce capacitance
- Low doped GaN channel layer (piezo)
- Schottky gate

3 Terminal Devices: High Frequency

Thyristors

- Needs long minority carrier lifetime
- Needs large area

Summary Which SiC ?

- Many devices demonstrated
- Vertical (power) vs lateral (high frequency)
- Breakdown voltages close to theoretical
- MOSFET mobility obstacle
- Production economy yield chip size

CONCLUSIONS

WHY SiC? **Excellent Properties! HOW SiC?** Higher T than Silicon! WHICH SiC?

Small Area for Economy!

